
System V

APPENDIX A

New Manual Pages for the

UNIX™ System User's Manual - System V
and the

UNIX™ System Administrator's Manual - System V

EX (1) UNIX System V EX (1)

NAME
ex — text editor

SYNOPSIS

ex[—][-—v][-t sag] [—r] [+command][-1] [—x] name ...

DESCRIPTION

Ex is the root of a family of editors: ex and vi. Ex is a line oriented editor which is a superset of
ed.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi (1), which
is a command which focuses on the display editing portion of ex.

DOCUMENTATION

The Ex Reference Manual is a comprehensive and complete manual for the command mode
features of ex, but you cannot learn to use the editor by reading it. For an introduction to more
advanced forms of editing using the command mode of ex see the editing documents written by

' Brian Kernighan for the editor ed; the material in the introductory and advanced documents works
also with ex.

An Introduction to Display Editing with Vi introduces the display editor vi and provides reference
material on vi. The Vi Quick Reference card summarizes the commands of vi in a useful, func-
tional way, and is useful with the Introduction.

FOR ED USERS

Page |

If you have used ed you will find that ex has a number of new features useful on CRT terminals.
Intelligent terminals and high speed terminals are very pleasant to use with vi. Generally, the editor
uses far more of the capabilities of terminals than ed does, and uses the terminal capability data
base termcap(5) and the type of the terminal you are using from the variable TERM in the
environment to determine how to drive your terminal efficiently. The editor makes use of features
such as insert and delete character and line in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using wi(1). There is also an interline editing open (o)
command which works on all terminals.

Ex contains a number of new features for easily viewing the text of the file. The z command gives
easy access to windows of text. Hitting “D causes the editor to scroll a half-window of text and is
more useful for quickly stepping through a file than just hitting return. Of course, the screen
oriented visual mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command allows you to reverse any
single change which goes astray. Ex gives you a lot of feedback, normally printing changed lines,
and indicates when more than a few lines are affected by a command so that it is easy to detect
when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited them so that you don't
accidentally clobber with a write a file other than the one you are editing. If the system (or editor)
crashes, or you accidentally hang up the phone, you can use the editor recover command to retrieve
your work. This will get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can give it a list of files
on the command line and use the next (n) command to deal with each in turn. The next command
can also be given a list of file names, or a pattern as used by the shell to specify a new set of files to
be dealt with. In general, filenames in the editor may be formed with full shell metasyntax. The
metacharacter “%’ is also available in forming filenames and is replaced by the name of the current
file.

For moving text between files and within a file the editor has a group of buffers, named a through z.
You can place text in these named buffers and carry it over when you edit another file.

EX (1) UNIX System V EX(1)

There is a command & in ex which repeats the last substitute command. In addition there is a
confirmed substitute command. You give a range of substitutions to be done and the editor interac-
tively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. Ex also allows regular expres-
sions which match words to be constructed. This is convenient, for example, in searching for the
word “edit” if your document also contains the word “editor.”

Ex has a set of options which you can set to tailor it to your liking. One option which is very useful
is the autoindent option which allows the editor to automatically supply leading white space to align
text. You can then use the “D key as a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command which supplies white
space between joined lines automatically, commands < and > which shift groups of lines, and the
ability to filter portions of the buffer through commands such as sort.

INVOCATION OPTIONS

The following invocation options are interpreted by ex:

- Suppress all interactive-user feedback. This is useful in processing editor scripts.

-v Invokes vi

—tlag Edit the file containing the tag and position the editor at its definition.

—rfile Recover file after an editor or system crash. If file is not specified a list of all
saved files will be printed.

+command Begin editing by executing the specified editor search or positioning command.

-1 LISP mode; indents appropriately for lisp code, the 0 (} [ll and 1] commands in vi
and open are modified to have meaning for /isp .

x Encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

The name argument indicates files to be edited.

Ex States

Command Normal and initial state. Input prompted for by :. Your kill character cancels
partial command.

Insert Entered by a i and c. Arbitrary text may be entered. Insert is normaiiy ter-
minated by line having only. on it, or abnormally with an interrupt.

Open/visual Entered by open or vi, terminates with Q or “\.

Ex command names and abbreviarions
abbrev ab next n unabbrevy = una
append a number nu = undo u
args ar open 0 unmap unm
change c¢ preserve pre version ve
copy cos print P visual vi
delete d put pu = write w
edit e quit q xit x
file f read re yank ya
global g£ recover rec window Zz
insert i rewind rew escape :
‘join j set Be Ishift <
list ! shell sh print next CR
map source £0 resubst &
mark ma stop at rshift >

EX (1) UNIX System V

move m substitutes . scroll “D

Ex Command Addresses

n line n

- current

$ last

+ next

= previous
+n n forward

% 1,5

Initializing options
EXINIT

SHOME/.exre

./.exre
set x

set nox

set x = val

set

set all

set x?

Useful options
autoindent

autowrite

ignorecase

lisp

list

magic

number

paragraphs

redraw

scroll

sections

shiftwidth

showmatch

slowopen

window

wrapscan

wrapmargin

/pat next with pat
?pat previous with pat

xon n before x

Xyy x through y

"x marked with x

previous context

environmental variable for options

editor initialization file
editor initialization file
enable option
disable option

give value val
show changed options

show all options

show value of option x

ai supply indent
aw write before changing files

ic in scanning
() (} are s-exp’s
print “I for tab, $ at end

. [* special in patterns
nu number lines
para macro names which start ...

simulate smart terminal

command mode lines
sect macro names ...
sw for < >, and input “D
sm to) and } as typed
slow stop updates during insert

visual mode lines
ws around end of buffer?
wm automatic line splitting

Scanning pattern formation

$

\<
\>

[str]
[str]
Ix—yl
*

AUTHOR

The vi (ex) editor is based on software developed by The Unviersity of California, Berkeley Cali-

fornia, Computer Science Division, Department of Electrical Engineering and Computer Science,

Page 3

and such software is owned and licensed by the Regents of the University of California.

beginning of line

end of line

any character

beginning of word

end of word

any char in str
... Not in str
... between x and y

any number of preceding

EX(1)

EX (1) UNIX System V EX (1)

FILES :
/usr /lib/ex?.?strings error messages
/usr/lib/ex?.? recover recover command
/usr/lib/ex?.?preserve —_ preserve command
/etc/termcap describes capabilities of terminals
SHOME/.exre editor startup file
-/.exre editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxannnn named buffer temporary .
/usr/preserve preservation directory

SEE ALSO

awk(1), ed(1), grep(1), vi(1), termeap(5)

CAVEATS AND BUGS

The version of ex that runs on the PDP11 does not support the full command set due to space limi-
tations. The commands which are not supported are detailed in the “Ex Reference Manual.” The
most notable commands which are missing are the macro and abbreviation facilities.

The undo command causes all marks to be lost on lines changed and then restored if the marked
lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full of
output may result if long lines are present.

File input/output errors don’t print a name if the command line ‘~’ option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the editor.
Null characters are discarded in input files, and cannot appear in resultant files.

Page 4

NON-BTL (1) UNIX System V NON-BTL (1)

NAME
non-btl — re-install mm macros without Bell Labs specific features

SYNOPSIS
sh non-btl.sh

DESCRIPTION
The non-btl.sh command will modify and re-install the source for the Memorandum Macros (used
with nroff(1) and troff(1)) when Bell Laboratories specific macros are not desired.

Specifically, use of the non-btl.sh command will remove the .TM, .PM, and .CS macros, and the

}2 string (which normaliy contains the name Bell Laboratories) from the macro package. After
execution of non-btl.sh , use of these features will have no effect.

This command does not remove the source for these features from the macro file, but does erase

their definition. Those users who wish to tailor the macro package to their own environment may
choose to not run non-btl.sh , but to modify the definition of the affected macros and string to their
own specifications. Remember to re-install the macros after they are modified.

IMPORTANT

The non-btl.sh command is located in the /usr/src/lemd/text/macros.d directory, and may only be
used by the super-user.

Page 1

FSBA (1M) UNIX System V (VAX only) FSBA(1M)

NAME
fsba — file system block analyzer

SYNOPSIS
fsha file-system ...

DESCRIPTION
Fsba determines the number of extra sectors (1 sector has 512 bytes) needed when the file system
logical block size is increased from 512 bytes per block to 1024 bytes/block. File-system should be
specified by device name (e.g., /dev/rp11).

Fsba determines how many sectors are currently allocated for the 512 bytes/block file system, and

how many sectors will be required for the 1024 bytes/block converted file system. Fsba also prints
out the number of allocated and free i-nodes for each file system.

If the number of free sectors for the 1024 bytes/block file system is negative, this indicates the file-
system is too large to convert to 1024 bytes/block.

SEE ALSO

Page |

fs (4).

vii) UNIX System V VI(1)

NAME F

vi — screen oriented (visual) display editor based on ex

SYNOPSIS

vil —t tag] [—r file] | +command][-1][-wa] [-x] name ...

DESCRIPTION

Vi (visual) is a display oriented text editor based on an underlying line editor ex(1). It is possible
to use the command mode of ex from within vi and vice-versa.

When using vi changes you make to the file are reflected in what you see on your terminal screen.

The position of the cursor on the screen indicates the position within the file. The Vi Quick Refer-
ence card and the Introduction to Display Editing with Vi provide full details on using vi.

INVOCATION

The following invocation options are interpreted by vi:

—ttag Edit the file containing the tag and position the editor at its definition.

—rfile Recover file after an editor or system crash. If file is not specified a list of all
saved files will be printed.

+command Begin editing by executing the specified editor search or positioning command .

-I LISP mode; indents appropriately for lisp code, the () {} [f and I] commands in vi
and open are modified to have meaning for lisp .

—wn Set the default window size to n. This is useful when using the editor over a slow
speed line.

=X Encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

The name argument indicates files to be edited.

"VI STATES"

Command Normal and initial state. Other states return to command state upon completion.
ESC (escape) is used to cancel a partial command.

Insert Entered byaiAloOcCsSR. Arbitrary text may then be entered. Insert is
normally terminated with ESC character, or abnormally with interrupt.

Last line Reading input for : / ? or !; terminate with ESC or CR to execute, interrupt to
cancel.

COMMANDS

Counts before vi commands
line/column number z Gi
scroll amount "D “U
replicate insert aiATl

repeat effect

Sample commands
dw

itextESC

cwnewESC

easESC

xp
ZZ

Page 1

most of the rest

delete a word

... leaving white space
delete a line
.. 3 lines

insert text abc
change word to new
pluralize word

transpose characters
exit vi

VI(i) UNIX System V VI(1)

Interrupting, canceling

ESC end insert or incomplete cmd
“? (delete or rubout) interrupts
“L reprint screen if ~? scrambles it

File manipulation
[Ww write back changes

:wq write and quit
q quit

3q! quit, discard changes

te name edit file name

ze! reedit, discard changes

te + name edit, starting at end

re tn edit starting at line n

ie # edit alternate file

e synonym for :e #
7wW name write file name

sw! name overwrite file name

‘sh run shell, then return

slomd run cmd, then return

n edit next file in arglist

in args specify new arglist

At show current file and line
“G synonym for :f

ita tag to tag file entry tag

zta, following word is tag

Positioning within file
F forward screen

“B backward screen
“D scroll down half screen
‘U scroll] up half screen
G goto line (end default)
/pat next line matching pat
?pat prev line matching par

n repeat last / or ?
N reverse last / or ?
/pat/ +n n’th line after pat
?pat?—n n’th line before pat

i) next section/function
II previous section/function
% find matching () { or }

Adjusting the screen
5 clear and redraw
“R Tetype, eliminate @ lines

zCR redraw, current at window top
7 ... at bottom

Zz. .. at center

/pat/z— pat line at bottom
zn. use 7 line window

"E scroll window down 1 line
Bb scroll window up | line

Page 2

RR er ee ee

VIQ)) UNIX System V

Marking and returning
”

WE:

sitioning 3 x Line

1+f°2

previous context

... at first non-white in line
mark position with letter x

to mark x

... at first non-white in line

home window line

last window line

middle window line

next line, at first non-white

previous line, at first non-white
return, same as +

next line, same column

previous line, same column

Character positioning
first non white

beginning of line

end of line

forward

backwards

same as

same as —

find x forward

f backward

upto x forward

back upto x

repeat last f F t or T
inverse of ;

to specified column

find matching ({) or }

Words, sentences, paragraphs

Hagan woos

word forward

back word

end of word
to next sentence

to next paragraph

back sentence

back paragraph

blank delimited word

back W

to end of W

Commands for LISP Mode

)
}
(
{

Forward s-expression

... but don’t stop at atoms

Back s-expression

... but don’t stop at atoms

Corrections during insert

“H
“W
erase

Page 3

erase last character

erase last word

your erase, same as “H

VI(1)

VI(i) UNIX System V VI(i)

kill your kill, erase input this line

\ escapes “H, your erase and kill
ESC ends insertion, back to command
4 interrupt, terminates insert
"D backtab over autoindent

1D kill autoindent, save for next
0°D ... but at margin next also
av. quote non-printing character

Insert and replace
a append after cursor
i insert before
A append at end of line
I insert before first non-blank

Ci) open line below

‘0 open above

rx replace single char with x

R replace characters

Operators (double to affect lines)
d delete

c change

< left shift

> right shift
! ! filter through command
aa indent for LISP

yank lines to buffer 23

Miscellaneous operations
Cc change rest of line
D delete rest of line

s substitute chars

i) substitute lines

J join lines
x delete characters

xX ... before cursor

Y yank lines

Yank and put
Pp put back lines
P put before

“xp put from buffer x

"xy yank to buffer x
"xd delete into buffer x

Undo, redo, retrieve

u undo last change

U restore current line

repeat last change
"dp retrieve d'th last delete

AUTHOR

The vi (ex) editor is based on software developed by The Unviersity of California, Berkeley Cali-
fornia, Computer Science Division, Department of Electrical Engineering and Computer Science,

and such software is owned and licensed by the Regents of the University of California.

VI(1) UNIX System V VI(1)

SEE ALSO

ex (1). “Vi Quick Reference” card and “An Introduction to Display Editing with Vi", in the
UNIX System Document Processing Guide.

CAVEATS AND BUGS

Page 5

The version of vi that runs on the PDP-11 does not support the full command set due to space limi-

tations. The commands which are not supported are detailed in “An Introduction to Display Editing
with Vi”. The most notable commands which are missing are the macro and abbreviation facilities.

Software tabs using “T work only immediately after the autoindent.

Left and right shifts on intelligent terminals don’t make use of insert and delete character operations
in the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are typed. If a
long word passes through the margin and onto the next line without a break, then the line won’t be
broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the termi-
nals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the :append,

:change, and :insert commands, since it is not possible to give more than one line of input to a :

escape. To use these on a :global you must Q to ex command mode, execute them, and then reenter
the screen editor with vi or open.

GETTYDEFS (4) UNIX System V GETTYDEFS (4)

NAME

gettydefs — speed and terminal settings used by getty

DESCRIPTION

FILES

The /etc/gettydefs file contains information used by getty(IM) (see the UNIX System
Administrator's Manual) to set up the speed and terminal settings for a line. It supplies informa-
tion on what the /ogin prompt should look like. It also supplies the speed to try next if the user

indicates the current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format: ;

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. Lines that begin with # are ignored and may be used to

comment the file. The various fields can contain quoted characters of the form \b, \n, \c, etc., as
well as \nnn, where nnn is the octal value of the desired character. The various fields are:

label This is the string against which gerry tries to match its second argument. It is often

the speed, such as 1200, at which the terminal is supposed to run, but it needn’t be
(see below).

initial-flags These flags are the initial ioct/(2) settings to which the terminal is to be set if a ter-
minal type is not specified to getty. Getty understands the symbolic names specified
in /usr/include/sys/termio.h (see termio(7) in the UNIX System Administrator's
Manual). Normally only the speed flag is required in the initial-flags. Getty

automatically sets the terminal to raw input mode and takes care of most of the other
flags. The initial-flag settings remain in effect until getty executes Jogin(1).

final-flags These flags take the same values as the initial-flags and are set just prior to getty

executes Jogin. The speed flag is again required. The composite flag SANE takes
care of most of the other flags that need to be set so that the processor and terminal
are communicating in a rational fashion. The other two commonly specified final-
flags are TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so that
the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where white
space is ignored (a space, tab or new-line), they are included in the /ogin-prompt
field.

next-label This indicates the next /abel of the entry in the table that getty should use if the user

types a <break> or the input cannot be read. Usually, a series of speeds are linked

together in this fashion, into a closed set. For instance, 2400 linked to 1200, which

in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /ete/gettydefs is used, thus mak-

ing the first entry of /etc/gettydefs the default entry. It is also used if getty can’t find the specified
label. If /etc/gettydefs itself is missing, there is one entry built into the command which will bring
up a terminal at 300 baud.

It is strongly recommended that after making or modifying /ete/gettydefs, it be run through getty
with the check option to be sure there are no errors.

/etc/gettydefs

SEE ALSO

Page 1

getty(1M), termio(7) in the UNIX System Administrator's Manual.
login(1), ioctl(2).

TERMCAP(5) UNIX System V TERMCAP(S)

NAME ;

termcap — terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi(1). Terminals are described in

termcap by giving a set of capabilities which they have, and by describing how operations are per-
formed. Padding requirements and initialization sequences are included in termcap.

Entries in termcap consist of a number of ‘.’ separated fields. The first entry for each terminal gives

the names which are known for the terminal, separated by ‘|’ characters. The first name is always 2
characters long and is used by older systems which store the terminal type in a 16 bit word in a sys-

temwide data base. The second name given is the most common abbreviation for the terminal, and
the last name given should be a long name fully identifying the terminal. The second name should
contain no blanks; the last name may well contain blanks for readability.

CAPABILITIES

Page |

(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name Type Pad? Description

ae str (P)_ End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins

as str (P) Start alternate character set
be str Backspace if not “H
bs bool Terminal can backspace with “H
bt str (P) Back tab

bw bool Backspace wraps from column 0 to last column
Cee 2 tr Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str. (P) Cursor motion
co num Number of columns in a line

cr str (P*) Carriage return, (default “M)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above

dB num Number of millisec of bs delay needed
db bool Display may be retained below

dc num Number of millisec of cr delay needed

de str (P*) Delete character

dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line

dT num Number of millisec of tab delay needed
ed str End delete mode

ei sir End insert mode; give :ei=: if ic
€0 str Can erase overstrikes with a blank

TERMCAP(5)

str

bool

str

str

hum

(P*)

(P)

(P*)

(P*)

(P)

(P)
(P)

UNIX System V TERMCAP(5)

Hardcopy terminal page eject (default “L)
Hardcopy terminal

Half-line down (forward 1/2 linefeed)
Home cursor (if no em)
Half-line up (reverse 1/2 linefeed)
Hazeltine; can’t print ~s

Insert character
Name of file containing is

Insert mode (enter); give :im™: if ic s
Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initialization string

Sent by other function keys 0-9
Sent by backspace key
Sent by terminal down arrow key

Out of keypad transmit mode
Sent by home key

Sent by terminal left arrow key

Number of other keys

Termcap entries for other non-function keys
Sent by terminal right arrow key
Put terminal in keypad transmit mode
Sent by terminal up arrow key

Labels on other function keys
Number of lines on screen or page

Last line, first column (if no cm)
Arrow key map, used by vi version 2 only

Safe to move while in insert mode
Memory lock on above cursor.

Safe to move while in standout and underline mode

Memory unlock (turn off memory lock).
No correctly working carriage return (DM2500,H2000)
Non-destructive space (cursor right)

Newline character (default \n)
Terminal is a CRT but doesn’t scroll.
Terminal overstrikes

Pad character (rather than null)
Has hardware tabs (may need to be set with is)

End stand out mode
Scroll forwards
Number of blank chars left by so or se
Begin stand out mode

Scroll reverse (backwards)

Tab (other than “I or with padding)
Entry of similar terminal - must be last
String to end programs that use cm

String to begin programs that use cm
Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue

Terminal underlines even though it doesn’t overstrike
Upline (cursor up)
Start underscore mode

Page 2

TERMCAP(5) UNIX System V TERMCAP(5)

Page 3

vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode

xb bool Bechive (f1—escape, f2—ctrl C)
xn bool A newline is ignored after a wrap (Concept)

xr bool Return acts like ce \r \n (Delta Data)
xs bool Standout not erased by writing over it (HP 2647)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry *

The following entry, which describes the Concept—100, is among the more complex entries in the

termcap file as of this writing. (This particular concept entry is outdated, and is used as an example

only.)

¢1|c100|concept]00:is\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al™3*\E*R:am:bs:cd™16*\E*C:ce™16\E*S:cl™2**L:icm™\Ea%+ %+

:co#80:\:dce=16\E°A:dl=3*\E’ B:ei=\E\200:e0:im=\E"P:in
ip=16*:li#24:mi:nd=\E=:\

:se™\Ed\Ee:so™\ED\EE:ta™8\t:ul:up™\E;:vb™\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and that empty
fields may be included for readability (here between the last field on a line and the first field on the

next). Capabilities in termcap are of three types: Boolean capabilities which indicate that the termi-

nal has some particular feature, numeric capabilities giving the size of the terminal or the size of
particular delays, and string capabilities, which give a sequence which can be used to perform par-

ticular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has automatic mar-
gins (i.e. an automatic return and linefeed when the end of a line is reached) is indicated by the
capability am. Hence the description of the Concept includes am. Numeric capabilities are fol-
lowed by the character ‘#’ and then the value. Thus co which indicates the number of columns the
terminal has gives the value ‘80° for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the two
character code, an ‘=’, and then a string ending at the next following ‘:’. A delay in milliseconds

may appear after the ‘=’ in such a capability, and padding characters are supplied by the editor
after the remainder of the string is sent to provide this delay. The delay can be either a integer, e.g.

‘20’, or an integer followed by an ‘*’, i.e. ‘3*’. A ‘*’ indicates that the padding required is propor-

tional to the number of lines affected by the operation, and the amount given is the per-affected-unit
padding required. When a ‘*’ is specified, it is sometimes useful to give a delay of the form ‘3.5’ to
specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding of

characters there. A \E maps to an ESCAPE character, “x maps to a control-x for any appropriate x,

and the sequences \n \r \t \b \f give a newline, return, tab, backspace and formfeed. Finally, char-

acters may be given as three octal digits after a \, and the characters ~ and \ may be given as * and
\\._ If it is necessary to place a: in a capability it must be escaped in octal as \072. If it is neces-

sary to place a null character in a string capability it must be encoded as \200. The routines which

deal with termcap use C strings, and strip the high bits of the output very late so that a \200 comes
out as a \000 would.

TERMCAP (5) UNIX System V TERMCAP (5)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a ter-
minal description is by imitating the description of a similar terminal in termcap and to build up a

description gradually, using partial descriptions with ex to check that they are correct. Be aware

that a very unusual terminal may expose deficiencies in the ability of the termcap file to describe it

or bugs in ex. To easily test a new terminal description you can set the environment variable

TERMCAP to a pathname of a file containing the description you are working on and the editor
will look there rather than in /etchermcap. TERMCAP can also be set to the termcap entry itself to

avoid reading the file when starting up the editor. °

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If the
terminal is a CRT, then the number of lines on the screen is given by the li capability. If the termi-

nal wraps around to the beginning of the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen, then this is given by the el string capa-
bility. If the terminal can backspace, then it should have the bs capability, unless a backspace is

accomplished by a character other than “H in which case you should give this character as the be
string capability. If it overstrikes (rather than clearing a position when a character is struck over)
then it should have the os capability.

A very important point here is that the local cursor motions encoded in rermcap are undefined at the

left and top edges of a CRT terminal. The editor will never attempt to backspace around the left
edge, nor will it attempt to go up locally off the top. The editor assumes that feeding off the bottom

of the screen will cause the screen to scroll up, and the am capability tells whether the cursor sticks

at the right edge of the screen. If the terminal has switch selectable automatic margins, the

termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 teletype

is described as

t3|33|tty33:co#72:0s

while the Lear Siegler ADM—3 is described as

cl|adm3|3|Isi adm3:am:bs:cl=*Z:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a em string capability, with printf(3s) like escapes

%x in it. These substitute to encodings of the current line or column position, while other charac-
ters are passed through unchanged. If the em string is thought of as being a function, then its argu-
ments are the line and then the column to which motion is desired, and the % encodings have the

following meanings:

Tod as in printf, 0 origin
%2 like %2d
%3 like %3d

%. like Yc
%+x adds x to value, then %.

%>xy if value > x adds y, no output.

Yor reverses order of line and column, no output

%i increments line/column (for 1 origin)
To% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16*(x/10)) + (x%10), no output.
%D Reverse coding (x-2*(x%16)), no output. (Delta Data).

Page 4

TERMCAP(5) UNIX System V TERMCAP(5)

Page 5

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y padded

for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that the row
and column are printed as two digits. Thus its em capability is cm=6\E&%r%2c%2Y. The Micro-
term ACT-IV needs the current row and column sent preceded by a “T, with the row and column sim-

ply encoded in binary, cm=°T%.%.. Terminals which use %. need to be able to backspace the cur-
sor (bs or be), and to move the cursor up one line on the screen (up introduced below). This is

necessary because it is not always safe to transmit \t, \n “D and \r, as the system may change or
discard them.

A final example is the LS} ADM-3a, which uses row and column offset by a blank character, thus
em=\E=%+ %+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the current

position unchanged, then this sequence should be given as nd (non-destructive space). If it can
move the cursor up a line on the screen in the same column, this should be given as up. If the ter-

minal has no cursor addressing capability, but can home the cursor (to very upper left corner of

screen) then this can be given as ho; similarly a fast way of getting to the lower left hand corner can
be given as ll; this may involve going up with up from the home position, but the editor will never do

this itself (unless I does) because it makes no assumption about the effect of moving up from the
home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where it

is, this should be given as ce. If the terminal can clear from the current position to the end of the
display, then this should be given as cd. The editor only uses cd from the first column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given as

al; this is done only from the first position of a line. The cursor must then appear on the newly

blank line. If the terminal can delete the line which the cursor is on, then this should be given as dl;

this is done only from the first position on the line to be deleted. If the terminal can scroll the
screen backwards, then this can be given as sb, but just al suffices. If the terminal can retain
display memory above then the da capability should be given; if display memory can be retained

below then db should be given. These let the editor understand that deleting a line on the screen

may bring non-blank lines up from below or that scrolling back with sb may bring down non-blank
lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which can

be described using termcap. The most common insert/delete character operations affect only the
characters on the current line and shift characters off the end of the line rigidly. Other terminals,

such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and untyped

blanks on the screen, shifting upon an insert or delete only to an untyped blank on the screen which

is either eliminated, or expanded to two untyped blanks. You can find out which kind of terminal

you have by clearing the screen and then typing text separated by cursor motions. Type abe def

using local cursor motions (not spaces) between the abc and the def. Then position the cursor

before the abc and put the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does not distinguish between

blanks and untyped positions. If the abc shifts over to the def which then move together around the

end of the current line and onto the next as you insert, you have the second type of terminal, and

should give the capability in, which stands for insert null. If your terminal does something different

and unusual then you may have to modify the editor to get it to use the insert mode your terminal

defines. We have seen no terminals which have an insert mode not not falling into one of these two

TERMCAP(S5) UNIX System V TERMCAP(5)

classes.

The editor can handle both terminals which have an insert mode, and terminals which send a simple
sequence to open a blank position on the current line. Give as im the sequence to get into insert
mode, or give it an empty value if your terminal uses a sequence to insert a blank position. Give as
ei the sequence to leave insert mode (give this, with an empty value also if you gave im). Now give

as ic any sequence needed to be sent just before sending the character to be inserted. Most termi-
nals with a true insert mode will not give ic, terminals which send a sequence to open a screen posi-

tion should give it here. (Insert mode is preferable to the sequence to open a position on the screen

if your terminal has both.) If post insert padding is needed, give this as a number of milliseconds in
ip (a string option). Any other sequence which may need to be sent after an insert of a single char-
acter may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the same

line (e.g. if there is a tab after the insertion position). If your terminal allows motion while in insert

mode you can give the capability mi to speed up inserting in this case. Omitting mi will affect only

speed. Some terminals (notably Datamedia’s) must not have mi because of the way their insert
mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de to
delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se

respectively. If there are several flavors of standout mode (such as inverse video, blinking, or under-
lining — half bright is not usually an acceptable standout mode unless the terminal is in inverse

video mode constantly) the preferred mode is inverse video by itself. If the code to change into or

out of standout mode leaves one or even two blank spaces on the screen, as the TVI 912 and Teleray
1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the termi-
nal has a code to underline the current character and move the cursor one space to the right, such as

the Microterm Mime, this can be given as uc. (If the underline code does not move the cursor to
the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a new
line or the cursor is addressed. Programs using standout mode should exit standout mode before

moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a

different mode during open and visual modes of ex, this can be given as vs and ve, sent at the start

and end of these modes respectively. These can be used to change, e.g., from a underline to a block
cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor, the

codes to enter and exit this mode can be given as ti and te. This arises, for example, from terminals

like the Concept with more than one page of memory. If the terminal has only memory relative

cursor addressing and not screen relative cursor addressing, a one screen-sized window must be fixed

into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even

though it does not overstrike, then you should give the capability ul. If overstrikes are erasable with
a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can be

given. Note that it is not possible to handle terminals where the keypad only works in local (this

Page 6

TERMCAP(5) UNIX System V TERMCAP(5)

applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or not

transmit, give these codes as ks and ke. Otherwise the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as kl,

kr, ku, kd, and kh respectively. If there are function keys such as f0, fl, ..., [9, the codes they send

can be given as k0, ki, ..., k9. If these keys have labels other than the default f0 through f9, the

labels can be given as 10, II, ..., 19. If there are other keys that transmit the same code as the termi-

nal expects for the corresponding function, such as clear screen, the rermcap 2 letter codes can be

given in the ko capability, for example, :ko=cl,ll,sf,sb:, which says that the terminal has clear, home

down, scroll down, and scroll up keys that transmit the same thing as the cl, Il, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have single character arrow

keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomputers due

to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists of groups of

two characters. In each group, the first character is what an arrow key sends, the second character

is the corresponding vi command. These commands are h for kl, j for kd, k for ku, | for kr, and H

for kh. For example, the mime would be :ma™*Kj°Zk*XI: indicating arrow keys left (“H), down
(*K), up (Z), and right (“X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pe.

If tabs on the terminal require padding, or if the terminal uses a character other than “I to tab, then
this can be given as ta.

‘ Hazeltine terminals, which don’t allow ‘” characters to be printed should indicate hz. Datamedia

terminals, which echo carriage-return linefeed for carriage return and then ignore a following
linefeed should indicate ne. Early Concept terminals, which ignore a linefeed immediately after an

am wrap, should indicate xm. If an erase-col is required to get rid of standout (instead of merely

writing on top of it), xs should be given. Teleray terminals, where tabs turn all characters moved

over to blanks, should indicate xt. Other specific terminal problems may be corrected by adding
more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file con-

taining long initialization strings. These strings are expected to properly clear and then set the tabs

on the terminal, if the terminal has settable tabs. If both are given, is will be printed before if.

This is useful where if is Assribhabset/std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain

exceptions. The string capability te can be given with the name of the similar terminal. This capa-

bility must be /ast and the combined length of the two entries must not exceed 1024. Since rermlib

routines search the entry from left to right, and since the tc capability is replaced by the correspond-

ing entry, the capabilities given at the left override the ones in the similar terminal. A capability

can be cancelled with xx@ where xx is the capability. For example, the entry

hn|2621nl:ks@:ke @:tc™2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the function

key labels when in visual mode. This is useful for different modes for a terminal, or for different
user preferences.

AUTHOR

FILES

Page 7

Termcap is based on software developed by The Unviersity of California, Berkeley California, Com-
puter Science Division, Department of Electrical Engineering and Computer Science.

/etc/termcap _ file containing terminal descriptions

TERMCAP(5) UNIX System V TERMCAP(S)

SEE ALSO

ex(1), vi().

CAVEATS AND BUGS

Note termcap will be replaced by terminfo in the next release. Transition tools will be provided.
Ex allows only 256 characters for string capabilities, and the routines in termcap(3) do not check &
for overfiow of this buffer. The total length of a single entry (excluding only escaped newlines) may
not exceed 1024.

The ma, vs, and ve entries are specific to the vi program. ©

Not all programs support all entries. There are entries that are not supported by any program.

Page 8

